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Numerical Analysis of Arbitrarily Shaped
Bodies Modeled by Surface Patches

JOHNSON J. H. WANG, SENIOR MEMBER, IEEE, AND CHARLES J. DRANE, SENIOR MEMBER, IEEE

Abstract —Numerical modeling techniques for arbitrarily shaped con-
ducting bodies using triangular surface patches are presented. Computer
codes based on the magnetic field integral equations, the electric field
integral equations, and the reaction integral equations were developed and
tested with various degrees of success.

I. INTRODUCTION

ANY FREE-SPACE scattering and radiation prob-

V¥ 1 lems can be readily analyzed by the wire-grid model-
ing technique [1]-[3] for which a number of well-tested
thin-wire moment-method codes have been developed.
However, these wire-grid models have certain limitations
[4], [5] and are dependent on the user’s judgement on such
issues as appropriate choice of wire diameter in the compu-
tation. As a result, there is an increasing level of interest in
modeling arbitrarily shaped bodies by surface patches [6]—
[15].

The analysis of surfaces is considerably more complex
than that of thin-wire structures. Consequently, computer
codes based on surface models tend to be more time
consuming than wire-grid codes. In this paper, three
surface-patch modeling techniques and their numerical re-
sults are presented. The first method is a modified version
of an earlier Magnetic Field Integral Equation (MFIE)
algorithm [11]. The second method utilizes the reaction
integral equation but was not fully tested because it re-
quires a prohibitively large computer run time. The third
method is an Electric Field Integral Equation (EFIE) algo-
rithm for handling thin-shell scatterers which cannot be
dealt with by the MFIE code. Numerical testing and
evaluation of a variety of geometries were carried out on
the CDC Cyber 74 /6400 computer at Georgia Tech and
the CDC 6600 computer at Hanscom Field.

In all three computer codes, planar triangular patches
are used to model the surfaces. For the MFIE and EFIE
codes, pulse functions are chosen as the basis functions,
and the impulse function as the test function. The solution
is by the well-known method of moments [16], which
converts the vectorial integral equations into linear scalar
matrix equations solvable on a digital computer.

Manuscript received December 7, 1981; revised March 16, 1982. This
work was supporied in part by Deputy for Electronic Technology
(RADC/ET), Air Force Systems Command, under Contract F19628-78-
C-0224.

J. J. H. Wang is with the Engineering Experiment Station, Georgia
Institute of Technology, Atlanta, GA 30332.

C. J. Drane is with the Electromagnetic Sciences Division, Home Air
Development Center, Hanscom Air Force Base, Bedford, MA 01731.

1I: T MFIE APPROACH

The basic MFIE code, which is based on an expansion
of subsectional pulse functions on planar triangular surface
patches and point-matching (testing by impulse functions),
has been reported in [11]. A major advantage, and simulta-
neously a limitation as well, of this approach is that the
integral in the self-patch matrix element is neglected in the
computation. The integral takes the following form:

L"= f5s5,V'0(n,, 1) ds’ (1)
where
¢ =lexp (= jk[r, —r'DI/ |1, — 7|,
r,,t’" vectors from the origin to the field and source
points, ,
f principal value integral,

v’ gradient operator with respect to the primed co-
ordinates, and
the nth surface patch.

It can be shown that for an equilateral triangular patch
small in comparison with the operating wavelength

I'=0.

2)
Thus the neglect of this integral whose integrand is singular
is well justified. Although the proof is based on the as-
sumption of an equilateral triangle, I departs only gradu-
ally and smoothly from (2) for triangles of unequal sides.
The proof of (2) is straightforward but quite lengthy [17].

The improvements of the computer algorithm include
the reduction of computational time and storage space for
symmetrical scatterers, for which the reduction of matrix
size to either one-half or one-fourth of the original size
depends on whether one-plane or two-plane symmetry
exists. An effort to achieve a symmetrical matrix as had
been accomplished in some thin-wire programs [2] was
unsuccessful. In fact, our observation indicates that matrix
symmetry is directly related to the self-conjugate property
of the linear operator in the integral equation. As long as
the operator in MFIE is not self-conjugate, one will be
unable to achieve matrix symmetry. On the other hand,
there is a one-to-one correspondence between a self-con-
jugate operator and a symmetrical matrix in any linear
space defined in any orthonormal basis [18].

Numerical computations have been performed previ-
ously for smooth conducting bodies such as the sphere and
the prolate spheroid [11], {19]. It is of interest to consider
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Fig. 2

other geometries with edges such as the finite-length cir-
cular and rectangular cylinders. The results of the compu-
tation for such geometries were then compared with exist-
ing data in the literature. While excellent agreement was
observed between known data and the present computa-
tion, there was an apparent discrepancy with respect to
polarization in some of the cases being considered. Namely,
our TE calculation may agree with known data of TM case,
and our TM case may agree with some other known TE
data in the literature. In fact, our results agree with some
sources and disagree with some other sources as far as the
incident polarization is concerned. At this point, we tenta-
tively assume that the discrepancy is due to confusion in
data presentation with respect to denoting the polarization.
A further examination of the literature may resolve this
apparent notational problem.

With the foregoing discussion in mind, we present the
numerical results, which are in good agreement with exist-
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Fig. 4. Comparison of the computed radar cross section of a conducting
rectangular cylinder with other known data.

ing data in the literature if we ignore these discrepancies in
polarization. In the simulation of a finite circular cylinder
with surface patches, two methods were used in the han-
dling of the effective diameter of the circular cylinder in
the simulation. Either the vertices of the triangle are on the
cylinder surface (cross section inscribed on circle) or the
vertices are on an enlarged cylinder with the same cross-
sectional area (cross-sectional area corrected on circle). The
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computed results are compared in Figs. 1 and 2 with
known data in the literature [4], [6], [9]. Comparison was
also made with the measured data of Carswell [20] and
Mack [21] with satisfactory agreement. The area-corrected
computation using an effective diameter larger than the
cylinder diameter appears to be in closer agreement with
known data.

Figs. 3 and 4 show the computed results for a rectangu-
lar cylinder, of which the cube is a special case, in compari-
son with known data [7]. Apparently, wedges of 90° pose
no difficulty in the MFIE computation.

The computational speed and central memory require-
ment are dependent on the number of patches used in the
simulation. For a 96-patch spheroid, which nearly occupies
the full central memory of the CDC Cyber 74 computer at
Georgia Tech, one run at a single frequency and one
incidence angle takes about 150 CPU’s. For symmetrical
scatterers, the execution time and central memory require-
ments are reduced by 75 percent. When there is two-plane
symmetry, this reduction is 94 percent. Thus, for the sphere,
in which two-plane symmetry exists, the execution time is 9
s and the central memory size will be one sixteenth of that
required by one with no symmetry.

III. THE REACTION INTEGRAL EQUATION APPROACH

The reaction integral equation has been applied to the
special case of a rectangular plate and a dihedral corner
reflector [8]. The possibility of using this approach for
arbitrarily shaped scatterers is examined here. The major
difficulty in this approach lies in the difficulties in the
integration to obtain the matrix elements given by

1j —
zd =—[ JI.Elds
AS,,

(3)
where

J. basis function of ith polarization in the mth patch
E; electric field due to the basis function of jth polariza-
tion in the nth patch.

Strictly speaking, (3) involves two double integrations, as
E] must also be evaluated. by an integration process.
Presently, there appears to be no closed-form expression
for the field of a triangular current patch. Even in the case
of a finite line source, the sinusoidally excited thin dipole is
probably the only one with a simple closed-form expres-
sion for the near-zone field [2]. In order to compute E/ in
(3), two integration methods were tried. The first method
employs numerical integration techniques, and the second
method is based on the approximation of the surface
current with several line current elements.

In the numerical integration technique, a definite in-
tegral is expanded into a finite series which can be com-
puted numerically [22]. Specifically, the integration of a
function over a triangular area can be carried out with a
64-point formula. 64 points in the triangle are preselected
according to a simple arithmetic formula, and the values of
the integrand at these points are then computed. The value
of the integral is then obtained by summing up the product
of these 64 sampled integrands and a predetermined
weighting function of simple arithmetic form.
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Fig. 5. Comparison of computed mutual impedances between two rec-

tangular dipoles.

The accuracy of the numerical integration depends on
how rapidly and frequently the value of the integrand
varies in the area of integration. The 64-point algorithm
was checked with several known functions, and the accu-
racy of this algorithm was quite impressive. For example, a
comparison between the exact values and the results of
numerical integration for the integral

Llfol—xsinwxdydx 4)

shows that even when =150 the 64-point algorithm is
accurate within 1 percent.

Although this integration algorithm is highly accurate, it
is inefficient. Consequently, considerable restraint must be
exercised in applying this technique to the evaluation of
matrix elements in (3). Since we were unable to obtain a
closed form analytical expression for EJ in (3), we chose to
approximate the patch current with orthogonal current
filaments. Obviously, the higher the number of filaments
included in the process, the more accurate will be the
approximation.

The expressions for the electric field radiated from a line
current having a sinusoidal distribution were well docu-
mented by Schelkunoff and Friis {23]. Because of the
symmetry of a straight line current, the radiated field is
constant around the axis of the line current. The radiated
field therefore consists of two components, one parallel to
the current and one perpendicular to the current. There is
no ¢ component if a cylindrical coordinate is assigned with
the current being along the z-axis. A check of the formulas
for E, and E, showed that E, was an exact expression.
However, the expression for E, was not an exact expression
as implied in [23].

Fig. 5 shows a comparison between the present calcula-
tion and the calculated data in [8] for the mutual imped-
ance between two rectangular dipoles. The present calcula-
tion employed a three-filament approximation for triangu-
lar surface patches. Each rectangular patch was divided
diagonally into two triangular patches. The agreement is
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good as long as the dipoles are spaced one quarter wave-
length away. For closely spaced dipoles, more current
filaments are needed in the approximation.

This combined analytical-numerical method made it pos-
sible to reduce drastically the computational time required
for the matrix element to about 1/20 of the time needed
for the previous numerical integration. However, the re-
quirement for computational time was still prohibitively
high. Presently, there appears to be no readily available
technique to reduce the CPU time to a more desirable
level.

1V. THE EFIE ArPROACH

The electric field integral equation takes the following
form [4]:

AXE™(r)= AX f{— en(r)o(r, r)

+H[ v L] vie(r. )} ds (5)

dmjwe

where
E™(r) incident electric field
~ 9 - 3
; =t 7~ +tt,7—,and
Vs Y9, 201,
£, Iy two orthogonal unit vectors on the surface S.

We denote the right-hand side of (5) with an operator
form £(J(r")) and rewrite it as

£ (J(r)) =X E™(r).

Furthermore, we let

(6)

R=C +8, (7)

where £, and £, refer to the terms involving J; and v,-J,
in (5), respectively.

In (5), the unknown current J, appears in two forms: J,
and v,-J,. If J, is chosen to be a pulse function, then V- J,
will be singular at the edge of the triangular cells. A similar
problem exists in the analyses of thin-wire scatterers and
bodies of revolution. For example, Harrington and Mautz
[16], [24] solved the single straight-wire problem with pulses
as basis functions and delta functions for testing. In com-
parison with a method using triangular functions for test-
ing, there was no significant difference in the results ob-
served as long as the segments are less than A /10 in length.
In the analyses of the scattering from bodies of revolution,
Mautz and Harrington [25] preferred the triangular func-
tions to a pulse function as the basis. However, in the
process of evaluating the matrix elements, the triangular
function is approximated by four pulse functions in one
integration and four impulise functions in another integra-
tion. The derivative of the basis function is approximated
by four pulse and impulse functions correspondingly. Thus
the handling of the derivative of the current is not very
restrictive in these earlier computations.

Based on the tradeoff between the expected efficiency
and accuracy of the computation, the pulse function was
first chosen as the basis function for the expansion of the
unknown current. For this basis expansion, the delta func-
tion is appropriate and compatible for testing as has been
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Fig. 6. Subdividing the two adjacent triangular patches, patch /, and
patch /.

observed in the MFIE algorithm. A major difficulty, as has
been discussed, is the handling of the term Vv/-J, in (5),
which can be dealt with in several ways. A series of
numerical tests were performed for these various schemes
but none of them was found satisfactory. Finally, a basis
function was selected and defined as follows. The surface
current is expanded as

L=2, (8)

where # is the index of the individual triangular patch and
5= L)+ I2(r). 9

J! and J? are two vectorial functions which satisfy
Jn)=U],  j=1.2 (10)

where #, is the positional vector of the center of the nth
patch, and U, and U} are unit orthogonal vectors.

In order to evaluate v,-J;, we divide each triangular
patch into three triangles by connecting each vertex with
the center of the bisectors as shown in Fig. 6. We then
approximate the diagram of current by

, , . o
V=V =y o
=v'-J
N A
=2 (11)
k=1T;, =1,

in the two subtriangles on each side of edge /. The edge
index / runs from 1 to L. Also in (11)

k . ~
Jl, —J/,'uk

(12)

and #, refers to the unit vectors %, y,Z for k=1,2,3,
respectively. Note that the expansion of the term involving
v,-J, is in terms of the edge index / while that for the J,
term is by patch number #.

We now test the integral (5) with a weighting function

ke n
Iy, =n 4
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defined as

wi(r) = 8(r—r,)u;,. (13)
A system of linear equations in the following form can be
generated by takjng the scalar product

(W, 0 (L) + (W, Lo( L)} = { W3, AX E™},
fori=1,2, m=1,2,---,N
(14)

where for m# [, or I, (I, and /, being the patch indices on
either side of the edge /)

1 A ' ’

(Wis£(1)) = Gzt X S5 = e (s, ) ds
LI

~ T XE (9, 9,)(85;,+ 85,,)

36 (r ). (15)

AS, in (15) denotes the area of patch /;, and r,, denotes the
center of edge /. With this approximation this term be-
comes equivalent to that for a pulse basis function.

The excitation column matrix in (14) is simply

(W, AX E™} =ul-f,, X E™(r,).

The term involving £, is, for m 1, or /,

(W 220D} = 4,

(16)

477'](08
A X f5(9- I (r)) V'S (8, 1) dS”
1 R
~ e, x S 3 L)
J Jj=1i=1
S
Y - 3 L ven.n) (7)
k=17,—1, k=1 12 "l,

where ¢{ and ¢; are distances from r, and 7, to edge /,
respectively, C, is the length of edge /, and #, is the position
vector of the center of edge /.

When m =1/, or [,, the field point r, is in the source
region, and the integral involving the El and £, operators
must be carefully handled because of the singular nature of
¢. Fig. 7 shows how a subtriangle on edge / is approxi-
mated by a sector of a circle so that the singular nature of
¢ at r,, =r, or r, can be accurately calculated. The integral
in (5) involving £, can be evaluated by using the following
relation when r,, =r, orr, :

[, ot = "/‘”"[qur(;fzmy )If]

—JkR
R

1 e kR, 1
=Jh _— -+
g ‘P"{Jk R, k? R,lkz}

Y, [ R, 1 1
+Js12—R'l— e /kRy q"i’p '—'F (18)

e

RdRd¢
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[T rs,=Centers of patch £,and £,

Fig. 7. Approximation of two subtriangles on edge / with a sector of a
circle whenr,, = #,.

Fig. 8. Approximation of a subtriangle by a sector of a circle when
r,= .

where AS, denotes the area of the two subtriangles on
either side of edge / and

— S (p—r) (=)
O el TR [T (19)
2
R, = TSI (20)

For the term involving £,, the scalar product in (17) can be
evaluated by the following relation:

I:f v'o(r,,r)dr
As’

_¢0Ro_._1 e_ij~ B
_fofo( jk R) = RRdg'dR
*ij
=[%’sin ¢y + p'(1—cos ¢0)]{— e IkRo +1+f dR}
(21)

where the arguments are illustrated in Fig. 8. Note that the
integration from R =0 to R = R,, R, being a small positive
number, can be ignored because

/”[R“v'qs(rm, rYRdR dg=0 (22)
Q 0
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which follows from (21). Since the integration over the
entire surface will cover all the areas, the integration in the
neighborhood of r,=r, is of the same form as that ap-
pearing in (22) which vanishes. The exponential integral in
(21) can be evaluated numerically.

If [/ is a true (physical) edge, the current component
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normal to the edge should vanish at the edge. This is
handled by either of two methods, both of which have been
tested. One is to require that the current on the patch /;,
which had real edge, satisfy

Jioh, =0. (23)

In this method, (23) replaces one of the equations in (14) in
the solution. Another method, which is used in the compu-
tation documented in this report, does not enforce (23) but
utilizes the fact that J,-7, = 0 on the edge in the evaluation
of the integrals in the generation of the matrix elements.

Based on the approach described above, an EFIE algo-
rithm was developed and tested numerically for a thin-plate
scatterer. Fig. 9 shows the convergence of the computation
by using 4, 32, and 72 triangular patches in the simulation.
Fig. 10 shows a comparison of the calculated echo area
with other known data. Fig. 11 shows the current distribu-
tion on a thin plate illuminated by a normally incident
plane wave. It was also observed that at the four corners of
the plate the calculated current smoothly turns 90°, a
phenomenon not reported in the literature.

V. CONCLUSIONS

Numerical analyses of arbitrarily-shaped conducting
bodies by surface-patch modeling techniques are discussed.
Three types of integral equations, the MFIE, EFIE, and
reaction integral equations, were used in the numerical
analyses. The MFIE appears least time consuming but is
unable to handle thin shell structures. The reaction integral
equation approach takes a prohibitively large CPU time
and appears impractical until either a more efficient in-
tegration method, numerical or analytical, is developed or
a considerably more powerful computer is available. The
EFIE approach, which can handle both smooth closed
surfaces and open thin shells and does not involve as much
integration as the reaction integral equation approach,
therefore deserves greater attention in present-day re-
search. .
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