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Abstract — Numerical modefhsg techniques for arbitrarily shaped con-

ducting bodies using triangular surface patches are presented. Computer

codes based on the magnetic field integral equations, the electric field

integral equations, and the reaction integraf equations were developed and

tested with various degrees of success.

I. INTRODUCTION

M ANY FREE-SPACE scattering and radiation prob-

lems can be readily analyzed by the wire-grid model-

ing technique [1]–[3] for which a number of well-tested

thin-wire moment-method codes have been developed.

However, these wire-grid models have certain limitations

[4], [5] and are dependent on the user’s judgement on such

issues as appropriate choice of wire diameter in the compu-

tation. As a result, there is an increasing level of interest in

modeling arbitrarily shaped bodies by surface patches [6]–

[15].

The analysis of surfaces is considerably more complex

than that of thin-wire structures. Consequently, computer

codes based on surface models tend to be more time

consuming than wire-grid codes. In this paper, three

surface-patch modeling techniques and their numerical re-

sults are presented. The first method is a modified version

of an earlier Magnetic Field Integral Equation (MFIE)

algorithm [11]. The second method utilizes the reaction

integral equation but was not fully tested because it re-

quires a prohibitively large computer run time. The third

method is an Electric Field Integral Equation (EFIE) algo-

rithm for handling thin-shell scatterers which cannot be

dealt with by the MFIE code. Numerical testing and

evaluation of a variety of geometries were carried out on

the CDC Cyber 74/6400 computer at Georgia Tech and

the CDC 6600 computer at Hanscom Field.

In all three computer codes, planar triangular patches

are used to model the surfaces. For the MFIE and EFIE

codes, pulse functions are chosen as the basis functions,

and the impulse function as the test function. The solution

is by the well-known method of moments [16], which

converts the vectorial integral equations into linear scalar

matrix equations solvable on a digital computer.
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11: THE MFIE APPROACH

The basic MFIE code, which is based on an expansion

of subsectional pulse functions on planar triangular surface

patches and point-matching (testing by impulse functions),

has been reported in [11]. A major advantage, and simulta-

neously a limitation as well, of this approach is that the

integral in the self-patch matrix element is neglected in the

computation. The integral takes the following form:

lnm = ~L~mV’@(rm, r’) ds’ (1)

where

o =[exp(–jklrm –r’l)]/[rm–r’l,

rm, r’ vectors from the origin to the field and source

points,

f principal value integral,

v’ gradient operator with respect to the primed co-

ordinates, and

AS. the n th surface patch.

It can be shown that for an equilateral triangular patch

small in comparison with the operating wavelength

1:=0. (2)

Thus the neglect of this integral whose integrand is singular

is well justified. Although the proof is based on the as-

sumption of an equilateral triangle, I: departs only gradu-

ally and smoothly from (2) for triangles of unequal sides.

The proof of (2) is straightforward but quite lengthy [17].

The improvements of the computer algorithm include

the reduction of computational time and storage space for

symmetrical scatterers, for which the reduction of matrix

size to either one-half or one-fourth of the original size

depends on whether one-plane or two-plane symmetry

exists. An effort to achieve a symmetrical matrix as had

been accomplished in some thin-wire programs [2] was

unsuccessful. In fact, our observation indicates that matrix

symmetry is directly related to the self-conjugate property

of the linear operator in the integral equation. As long as

the operator in MFIE is not self-conjugate, one will be

unable to achieve matrix symmetry. On the other hand,

there is a one-to-one correspondence between a self-con-

jugate operator and a symmetrical matrix in any linear

space defined in any orthonormal basis [18].

Numerical computations have been performed previ-

ously for smooth conducting bodies such as the sphere and

the prolate spheroid [11 ], [19]. It is of interest to consider
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other geometries with edges such as the finite-length cir-

cular and rectangular cylinders. The results of the compu-

tation for such geometries were then compared with exist-

ing data in the literature. While excellent agreement was

observed between known data and the present computa-

tion, there was an apparent discrepancy with respect to

polarization in some of the cases being considered. Namely,

our TE calculation may agree with known data of TM case,

and our TM case may agree with some other known TE

data in the literature. In fact, our results agree with some

sources and disagree with some other sources as far as the

incident polarization is concerned. At this point, we tenta-

tively assume that the discrepancy is due to confusion in

data presentation with respect to denoting the polarization.

A further examination of the literature may resolve this

apparent notational problem.

With the foregoing discussion in mind, we present the

numerical results, which are in good agreement with exist-
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ing data in the literature if we ignore these discrepancies in

polarization. In the simulation of a finite circular cylinder

with surface patches, two methods were used in the han-

dling of the effective diameter of the circular cylinder in

the simulation. Either the vertices of the triangle are on the

cylinder surface (cross section inscribed on circle) or the

vertices are on an enlarged cylinder with the same cross-

sectional area (cross-sectional area corrected on circle). The
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computed results are compared in Figs. 1 and 2 with

known data in the literature [4], [6], [9]. Comparison was

also made with the measured data of Carswell [20] and

Mack [21] with satisfactory agreement. The area-corrected

computation using an effective diameter larger than the

cylinder diameter appears to be in closer agreement with

known data.

Figs. 3 and 4 show the computed results for a rectangu-

lar cylinder, of which the cube is a special case, in compari-

son with known data [7]. Apparently, wedges of 90° pose

no difficulty in the MFIE computation.

The computational speed and central memory require-

ment are dependent on the number of patches used in the

simulation. For a 96-patch spheroid, which nearly occupies

the full central memory of the CDC Cyber 74 computer at

Georgia Tech, one run at a single frequency and one

incidence angle takes about 150 CPU’S. For symmetrical

scatterers, the execution time and central memory require-

ments are reduced by 75 percent. When there is two-plane

symmetry, this reduction is 94 percent. Thus, for the sphere,

in which two-plane symmetry exists, the execution time is 9

s and the central memory size will be one sixteenth of that

required by one with no symmetry.

III. THE REACTION INTEGRAL EQUATION APPROACH

The reaction integral equation has been applied to the

special case of a rectangular plate and a dihedral corner

reflector [8]. The possibility of using this approach for

arbitrarily shaped scatterers is examined here. The major

difficulty in this approach lies in the difficulties in the

integration to obttin the matrix elements given by

(3)

where

J; basis function of ith polarization in the m th patch

E: electric field due to the basis function of jth polariza-

tion in the n th patch.

Strictly speaking, (3) involves two double integrations, as

E: must also be evaluated, by an integration process.

Presently, there appears to be no closed-form expression

for the field of a triangular current patch. Even in the case

of a finite line source, the sinusoidally excited thin dipole is

probably the only one with a simple closed-form expres-

sion for the near-zone field [2]. In order to compute E; in

(3), two integration methods were tried. The first method

employs numerical integration techniques, and the second

method is based on the approximation of the surface

current with several line current elements.

In the numerical integration technique, a definite in-

tegral is expanded into a finite series which can be com-

puted numerically [22], Specifically, the integration of a

function over a triangular area can be carried out with a

64-point formula. 64 points in the triangle are preselected

according to a simple arithmetic formula, and the values of

the integrand at these points are then computed. The value

of the integral is then obtained by summing up the product

of these 64 sampled integrands and a predetermined

weighting function of simple arithmetic form.
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Fig. 5. Comparison of computed mutuaf impedances between two rec-
tangular dipoles.

The accuracy of the numerical integration depends on

how rapidly and frequently the value of the integrand

varies in the area of integration. The 64-point algorithm

was checked with several known functions, and the accu-

racy of this algorithm was quite impressive. For example, a

comparison between the exact values and the results of

numerical integration for the integral

1 l–x

JJ
sin u x dy dx

00
(4)

shows that even when o = 50 the 64-point algorithm is

accurate within 1 percent.

Although this integration algorithm is highly accurate, it

is inefficient. Consequently, considerable restraint must be

exercised in applying this technique to the evaluation of

matrix elements in (3). Since we were unable to obtain a

closed form analytical expression for EJ in (3), we chose to

approximate the patch current with orthogonal current

filaments. Obviously, the higher the number of filaments

included in the process, the more accurate will be the

approximation.

The expressions for the electric field radiated from a line

current having a sinusoidal distribution were well docu-

mented by Schelkunoff and Friis [23]. Because of the

symmetry of a straight line current, the radiated field is

constant around the axis of the line current. The radiated

field therefore consists of two components, one parallel to

the current and one perpendicular to the current. There is

no @component if a cylindrical coordinate is assigned with

the current being along the z-axis. A check of the formulas

for EP and E= showed that EP was an exact expression.

However, the expression for E2 was not an exact expression

as implied in [23].

Fig. 5 shows a comparison between the present calcula-

tion and the calculated data in [8] for the mutual imped-

ance between two rectangular dipoles. The present calcula-

tion employed a three-filament approximation for triangu-

lar surface patches. Each rectangular patch was divided

diagonally into two triangular patches. The agreement is
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good as long as the dipoles are spaced one quarter wave-

length away. For closely spaced dipoles, more current

filaments are needed in the approximation.

This combined analytical-numerical method made it pos-

sible to reduce drastically the computational time required

for the matrix element to about 1/20 of the time needed

for the previous numerical integration. However, the re-

quirement for computational time was still prohibitively

high. Presently, there appears to be no readily available

technique to reduce the CPU time to a more desirable

level.

IV. THE EFIE APPROACH

The electric field integral equation takes the following

form [4]:

ii x E’”’(r) = ~m;.tit—ii x ~{– J&pqr’)@(r, r’)

+ [v’,. ~(r’)]v’+(r, r’)} ds’ (5)

where

E’nc(r) incident electric field

.a. a
v:

‘tl~+t@’ and
. .
t,,12 two orthogonal unit vectors on the surface S’.

We denote the right-hand side of (5) with an operator

form E( ~(r’)) and rewrite it as

f2(~(r’)) =ii XE’nc(r). (6)

Furthermore, we let

C=!3, +L2 (7)

where E, and F* refer to the terms involving ~ and v;. ~

in (5), respectively.

lrt (5), the unknown current ~ appears in two forms: ~

and v:. ~. If J, is chosen to be a pulse function, then v;. ~

will be singular at the edge of the triangular cells. A similar

problem exists in the analyses of thin-wire scatterers and

bodies of revolution. For example, Barrington and Mautz

[16], [24] solved the single straight-wire problem with pulses

as basis functions and delta functions for testing. In com-

parison with a method using triangular functions for test-

ing, there was no significant difference in the results ob-

served as long as the segments are less than X / 10 in length.

In the analyses of the scattering from bodies of revolution,

Mautz and Barrington [25] preferred the triangular func-

tions to a pulse function as the basis. However, in the

process of evaluating the matrix elements, the triangular

function is approximated by four pulse functions in one

integration and four impulse functions in another integra-

tion. The derivative of the basis function is approximated

by four pulse and impulse functions correspondingly. Thus

the handling of the derivative of the current is not very

restrictive in these earlier computations.

Based on the tradeoff between the expected efficiency

and accuracy of the computation, the pulse function was

first chosen as the basis function for the expansion of the

unknown current. For this basis expansion, the delta func-

tion is appropriate and compatible for testing as has been

Fig. 6. Subdivldmg the two adjacent triangular patches, patch 11 and
patch 12,

observed in the MFIE algorithm. A major difficulty, as has

been discussed, is the handling of the term v~. ~ in (5),

which can be dealt with in several ways. A series of

numerical tests were performed for these various schemes

but none of them was found satisfactory. Finally, a basis

function was selected and defined as follows. The surface

current is expanded as
N

(8)
~yl

where n is the index of the individual triangular patch and

J: and J: are two vectorial functions which satisfy

J/(m)= U/, j=l,2 (lo)

where rn is the positional vector of the center of the n th

patch, and Unl and Un2 are unit orthogonal vectors.

In order to evaluate v;. ~, we divide each triangular

patch into three triangles by connecting each vertex with
the center of the bisectors as shown in Fig. 6. We then

approximate the diagram of current by

in the two subtriangles on each side

index 1 runs from 1 to L. Also in (11)

(11)

of edge 1. The edge

(12)k—r[ — r,, ” ~k

and tik refers to the unit vectors 2, j, 2 for k =1,2,3,

respectively. Note that the expansion of the term involving

v:” ~ is in terms of the edge index 1 while that for the ~
term is by patch number n.

We now test the integral (5) with a weighting function
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defined as
w~(r)=~(r–rn)u~. (13)

1171

A system of linear equations in the following form can be

generated by taking the scalar product

{w;,c,(~)}+{w;, E2(<)}={w;,fixE’”’},

fori=l,2, m=l,2,. ... N

(14)

where for m #11 or lZ (11 and 12 being the patch indices on

either side of the edge 1)

,

1
“@(rm$rlC). (15)

ASl, in (15) denotes the area of patch 1~, and qC denotes the

center of edge 1. With this approximation this term be-

comes equivalent to that for a pulse basis function.

The excitation column matrix in (14) is simply

{w;,fixE’”’}=ui.ii XE’”(. )mm m“ (16)

The term involving E2 is, for m #11 or 12

.fim X f~(V~-~(r’)) V’+(rm, r’)ds’

where t{and tj are distances from q, and q2 to edge 1,

respectively, Cl is the length of edge 1, and qC is the position

vector of the center of edge 1.

When m =11 or 12, the field point rm is in the source

region, and the integral involving the C, and f32 operators

must be carefully handled because of the singular nature of

~. Fig. 7 shows how a subtriangle on edge 1 is approxi-

mated by a sector of a circle so that the singular nature of

@at r~ = rl, or r,, can be accurately calculated. The integral

in (5) involving E ~ can be evaluated by using the following

relation when rm = r,, or r[2:

~1, , ~2=Centers of patch J, and .1,

Fig. 7. Approximation of two subtriangles on edge 1with a sector of a
circle when rm = q,.

Fig. 8.

!m

Approximation of a subtriangle by a sector of a circle when
r~ = r,,.

where ASI denotes the area of the two subtriangles on

either side of edge 1 and

(JB-rm)”(~A–rm)
(19)

+4 z
COS-’ ,lB__rm[ lfA–rml

(20)

For the term involving 82, the scalar product in (17) can be

evaluated by the following relation:

I=~yV’@(rm,r’)dr’

_ +0 R.H(
1 ~–jkR

—

)

–jk–z ~ARd~’dR

00

{
= [f’ sin ~, + j’(1 -COS ~o)] - e-JkRO + 1+ ‘O~dR

JRI 1
(21)

{

e–]k&, 1
=@+l, ;–— —

}

where the arguments are illustrated in Fig. 8. Note that the

R[,k2 ,, integration from R = O to R = R,, R, being a small positive

+@*{e-’kR’’(i~:+}+} ’18) ‘umber’canR:~~::’)RdR@=” ’22)
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which follows from (21 ). Since the integration over the

entire surface will cover all the areas, the integration in the

neighborhood of r~ = r,, is of the same form as that ap-

pearing in (22) which vanishes. The exponential integral in

(21) can be evaluated numerically.

If 1 is a true (physical) edge, the current component

-0.5 -0.25 0.0 025

X/L

Fig. 11. Current distribution at Y/L= 0.0555 on a thin plate d-

luminated by a normally incident plane wave.

normal to the edge should vanish at the edge. This is

handled by either of two methods, both of which have been

tested. One is to require that the current on the patch 11,

which had real edge, satisfy

q,. fi[, =o. (23)

In this method, (23) replaces one of the equations in ( 14) in

the solution. Another method, which is used in the compu-

tation documented in this report, does not enforce (23) but

utilizes the fact that Jn. ii ~,= O on the edge in the evaluation

of the integrals in the generation of the matrix elements.

Based on the approach described above, an EFIE algo-

rithm was developed and tested numerically for a thin-plate

scatterer. Fig. 9 shows the convergence of the computation

by using 4, 32, and 72 triangular patches in the simulation.

Fig. 10 shows a comparison of the calculated echo area

with other known data. Fig. 11 shows the current distribu-

tion on a thin plate illuminated by a normally incident

plane wave. It was also observed that at the four corners of

the plate the calculated current smoothly turns 90°, a

phenomenon not reported in the literature.

V. CONCLUSIONS

Numerical analyses of arbitrarily-shaped conducting

bodies by surface-patch modeling techniques are discussed.

Three types of integral equations, the MFIE, EFIE, and

reaction integral equations, were used in the numerical

analyses. The MFIE appears least time consuming but is

unable to handle thin shell structures. The reaction integral

equation approach takes a prohibitively large CPU time

and appears impractical until either a more efficient in-

tegration method, numerical or analytical, is developed or

a considerably more powerful computer is available. The

EFIE approach, which can handle both smooth closed

surfaces and open thin shells and does not involve as much

integration as the reaction integral equation approach,

therefore deserves greater attention in present-day re-

search.
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